3.5.22 \(\int \frac {\tan ^4(e+f x)}{(a+b \sec ^2(e+f x))^{3/2}} \, dx\) [422]

3.5.22.1 Optimal result
3.5.22.2 Mathematica [A] (verified)
3.5.22.3 Rubi [A] (verified)
3.5.22.4 Maple [B] (warning: unable to verify)
3.5.22.5 Fricas [B] (verification not implemented)
3.5.22.6 Sympy [F]
3.5.22.7 Maxima [F]
3.5.22.8 Giac [F]
3.5.22.9 Mupad [F(-1)]

3.5.22.1 Optimal result

Integrand size = 25, antiderivative size = 116 \[ \int \frac {\tan ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\frac {\arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{a^{3/2} f}+\frac {\text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{b^{3/2} f}-\frac {(a+b) \tan (e+f x)}{a b f \sqrt {a+b+b \tan ^2(e+f x)}} \]

output
arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/a^(3/2)/f+arctanh(b^ 
(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/b^(3/2)/f-(a+b)*tan(f*x+e)/a/ 
b/f/(a+b+b*tan(f*x+e)^2)^(1/2)
 
3.5.22.2 Mathematica [A] (verified)

Time = 4.61 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.73 \[ \int \frac {\tan ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\frac {\left (\frac {b \arctan \left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b-a \sin ^2(e+f x)}}\right )}{\sqrt {a}}+\frac {a \text {arctanh}\left (\frac {\sqrt {b} \sin (e+f x)}{\sqrt {a+b-a \sin ^2(e+f x)}}\right )}{\sqrt {b}}\right ) (a+2 b+a \cos (2 e+2 f x))^{3/2} \sec ^3(e+f x)}{2 \sqrt {2} a b f \left (a+b \sec ^2(e+f x)\right )^{3/2}}-\frac {(a+b) (a+2 b+a \cos (2 (e+f x))) \sec ^2(e+f x) \tan (e+f x)}{2 a b f \left (a+b \sec ^2(e+f x)\right )^{3/2}} \]

input
Integrate[Tan[e + f*x]^4/(a + b*Sec[e + f*x]^2)^(3/2),x]
 
output
(((b*ArcTan[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2]])/Sqrt[a 
] + (a*ArcTanh[(Sqrt[b]*Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2]])/Sqr 
t[b])*(a + 2*b + a*Cos[2*e + 2*f*x])^(3/2)*Sec[e + f*x]^3)/(2*Sqrt[2]*a*b* 
f*(a + b*Sec[e + f*x]^2)^(3/2)) - ((a + b)*(a + 2*b + a*Cos[2*(e + f*x)])* 
Sec[e + f*x]^2*Tan[e + f*x])/(2*a*b*f*(a + b*Sec[e + f*x]^2)^(3/2))
 
3.5.22.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.04, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 4629, 2075, 372, 398, 224, 219, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (e+f x)^4}{\left (a+b \sec (e+f x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 4629

\(\displaystyle \frac {\int \frac {\tan ^4(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (a+b \left (\tan ^2(e+f x)+1\right )\right )^{3/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 2075

\(\displaystyle \frac {\int \frac {\tan ^4(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 372

\(\displaystyle \frac {\frac {\int \frac {a \tan ^2(e+f x)+a+b}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a b}-\frac {(a+b) \tan (e+f x)}{a b \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {\frac {a \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+b \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a b}-\frac {(a+b) \tan (e+f x)}{a b \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {b \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+a \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{a b}-\frac {(a+b) \tan (e+f x)}{a b \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {b \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+\frac {a \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {b}}}{a b}-\frac {(a+b) \tan (e+f x)}{a b \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {b \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}+\frac {a \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {b}}}{a b}-\frac {(a+b) \tan (e+f x)}{a b \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\frac {b \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {a}}+\frac {a \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {b}}}{a b}-\frac {(a+b) \tan (e+f x)}{a b \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

input
Int[Tan[e + f*x]^4/(a + b*Sec[e + f*x]^2)^(3/2),x]
 
output
(((b*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/Sqrt[a 
] + (a*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/Sqr 
t[b])/(a*b) - ((a + b)*Tan[e + f*x])/(a*b*Sqrt[a + b + b*Tan[e + f*x]^2])) 
/f
 

3.5.22.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 372
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-a)*e^3*(e*x)^(m - 3)*(a + b*x^2)^(p + 1)*((c + d*x^2 
)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] + Simp[e^4/(2*b*(b*c - a*d)*(p + 1 
))   Int[(e*x)^(m - 4)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[a*c*(m - 3) + 
 (a*d*(m + 2*q - 1) + 2*b*c*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, 
e, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[m, 3] && IntBinomialQ[a 
, b, c, d, e, m, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 2075
Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*Expa 
ndToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{e, m, p, q}, x] && Binomi 
alQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  ! 
BinomialMatchQ[{u, v}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4629
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f 
_.)*(x_)])^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/f   Subst[Int[(d*ff*x)^m*((a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2 
)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Inte 
gerQ[n/2] && (IntegerQ[m/2] || EqQ[n, 2])
 
3.5.22.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1185\) vs. \(2(102)=204\).

Time = 10.59 (sec) , antiderivative size = 1186, normalized size of antiderivative = 10.22

method result size
default \(\text {Expression too large to display}\) \(1186\)

input
int(tan(f*x+e)^4/(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/2/f/b^(5/2)/(-a)^(1/2)/a*(4*a*(-a)^(1/2)*b^(3/2)*(csc(f*x+e)-cot(f*x+e)) 
+4*(-a)^(1/2)*b^(5/2)*(csc(f*x+e)-cot(f*x+e))-2*ln(4*((-a)^(1/2)*(a*(1-cos 
(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e)) 
^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)-2*a*(csc(f*x+ 
e)-cot(f*x+e)))/((1-cos(f*x+e))^2*csc(f*x+e)^2+1))*(a*(1-cos(f*x+e))^4*csc 
(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^ 
2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)*b^(5/2)-ln(4*(a*(1-cos(f*x+ 
e))^2*csc(f*x+e)^2+b*(1-cos(f*x+e))^2*csc(f*x+e)^2+b^(1/2)*(a*(1-cos(f*x+e 
))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc 
(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)-2*a*(csc(f*x+e)-cot 
(f*x+e))+a+b)/((1-cos(f*x+e))^2*csc(f*x+e)^2-2*csc(f*x+e)+2*cot(f*x+e)+1)) 
*a*(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1 
-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)*( 
-a)^(1/2)*b-ln(4*(-a*(1-cos(f*x+e))^2*csc(f*x+e)^2-b*(1-cos(f*x+e))^2*csc( 
f*x+e)^2+b^(1/2)*(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f 
*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^ 
2+a+b)^(1/2)-2*a*(csc(f*x+e)-cot(f*x+e))-a-b)/((1-cos(f*x+e))^2*csc(f*x+e) 
^2+2*csc(f*x+e)-2*cot(f*x+e)+1))*a*(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-c 
os(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x 
+e))^2*csc(f*x+e)^2+a+b)^(1/2)*(-a)^(1/2)*b)*(a*(1-cos(f*x+e))^4*csc(f*...
 
3.5.22.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 338 vs. \(2 (102) = 204\).

Time = 0.71 (sec) , antiderivative size = 1655, normalized size of antiderivative = 14.27 \[ \int \frac {\tan ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(tan(f*x+e)^4/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")
 
output
[-1/8*(8*(a^2*b + a*b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f 
*x + e)*sin(f*x + e) + (a*b^2*cos(f*x + e)^2 + b^3)*sqrt(-a)*log(128*a^4*c 
os(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 
5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 
 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x 
 + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2) 
*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*s 
qrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) - 2*(a^3*cos(f*x 
+ e)^2 + a^2*b)*sqrt(b)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - 
 b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt( 
b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f 
*x + e)^4))/(a^3*b^2*f*cos(f*x + e)^2 + a^2*b^3*f), -1/8*(8*(a^2*b + a*b^2 
)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) - 
4*(a^3*cos(f*x + e)^2 + a^2*b)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^ 
3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2) 
/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e))) + (a*b^2*cos(f*x + e)^2 + b^3) 
*sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 
32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2 
*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e 
)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5...
 
3.5.22.6 Sympy [F]

\[ \int \frac {\tan ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\tan ^{4}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(tan(f*x+e)**4/(a+b*sec(f*x+e)**2)**(3/2),x)
 
output
Integral(tan(e + f*x)**4/(a + b*sec(e + f*x)**2)**(3/2), x)
 
3.5.22.7 Maxima [F]

\[ \int \frac {\tan ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\tan \left (f x + e\right )^{4}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(tan(f*x+e)^4/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")
 
output
integrate(tan(f*x + e)^4/(b*sec(f*x + e)^2 + a)^(3/2), x)
 
3.5.22.8 Giac [F]

\[ \int \frac {\tan ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\tan \left (f x + e\right )^{4}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(tan(f*x+e)^4/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")
 
output
sage0*x
 
3.5.22.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {{\mathrm {tan}\left (e+f\,x\right )}^4}{{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2}} \,d x \]

input
int(tan(e + f*x)^4/(a + b/cos(e + f*x)^2)^(3/2),x)
 
output
int(tan(e + f*x)^4/(a + b/cos(e + f*x)^2)^(3/2), x)